If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+59x+50=0
a = 3; b = 59; c = +50;
Δ = b2-4ac
Δ = 592-4·3·50
Δ = 2881
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(59)-\sqrt{2881}}{2*3}=\frac{-59-\sqrt{2881}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(59)+\sqrt{2881}}{2*3}=\frac{-59+\sqrt{2881}}{6} $
| -3×14=4x-7 | | 15=-3(5r+6) | | 7x-77=100 | | 0=-5x+2x^2 | | X-7/5=1-x/5 | | 12x^2-8x+104=0 | | √(3x-2)=4-x | | 5x+8=x-4-8x | | 1/3x^2+3x+6=0 | | 0+7b=432 | | 90-x=22x | | -4(6+9d)=28 | | 180-x=22x | | 11y-9y-11=26.10 | | 12x-8=8x+10 | | 3/12x+3=11 | | 180=23x | | 3/1x+3=4-x | | 9x^-9+4x^2=0 | | 3(u+2)+2u=7(u-1) | | (19x-6)=(16x+12) | | -1/6(x-8)+1/2(x+2)=+16 | | 1y÷3-9=12 | | 16-4n=30 | | 16-4n=40 | | 11x^2+12x-7=0 | | 12.95+s=44 | | -10(x+9)+568=15+13 | | 5x-23=43 | | -x-2=-44 | | (x/3)-6=2 | | -10(x+9)+598=15+13 |